PKA Dynamics in a Drosophila Learning Center: Coincidence Detection by Rutabaga Adenylyl Cyclase and Spatial Regulation by Dunce Phosphodiesterase
نویسندگان
چکیده
The dynamics of PKA activity in the olfactory learning and memory center, the mushroom bodies (MBs), are still poorly understood. We addressed this issue in vivo using a PKA FRET probe. Application of dopamine, the main neuromodulator involved in aversive learning, resulted in PKA activation specifically in the vertical lobe, whereas octopamine, involved in appetitive learning, stimulated PKA in all MB lobes. Strikingly, MB lobes were homogeneously activated by dopamine in the learning mutant dunce, showing that Dunce phosphodiesterase plays a major role in the spatial regulation of cAMP dynamics. Furthermore, costimulation with acetylcholine and either dopamine or octopamine led to a synergistic activation of PKA in the MBs that depends on Rutabaga adenylyl cyclase. Our results suggest that Rutabaga acts as a coincidence detector and demonstrate the existence of subcellular domains of PKA activity that could underlie the functional specialization of MB lobes in aversive and appetitive learning.
منابع مشابه
Visualizing PKA Dynamics in a Learning Center
Gervasi et al. report in this issue of Neuron that the mushroom bodies in Drosophila, a critical center for olfactory memory formation, have spatially restricted PKA activity in response to specific neuromodulators. The dunce cAMP-phosphodiesterase and rutabaga adenylyl cyclase genes are necessary for two key properties of PKA dynamics in these neurons.
متن کاملRescue of the learning defect in dunce, a Drosophila learning mutant, by an allele of rutabaga, a second learning mutant.
rutabaga1 (rut1), a Drosophila learning mutant, has adenylate cyclase (EC 4.6.1.1) with reduced basal activity and the absence of calcium/calmodulin-stimulated activity. A second learning mutant, dunce, is defective in cyclic AMP degradation due to decreased or absent phosphodiesterase activity. These opposing biochemical defects allow rut1 to partially suppress the female sterility caused by e...
متن کاملAltered gene regulation and synaptic morphology in Drosophila learning and memory mutants.
Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cas...
متن کاملRegional calcium regulation within cultured Drosophila neurons: effects of altered cAMP metabolism by the learning mutations dunce and rutabaga.
The dunce (dnc) and rutabaga (rut) mutations of Drosophila affect a cAMP-dependent phosphodiesterase and a Ca(2+)/CaM-regulated adenylyl cyclase, respectively. These mutations cause deficiencies in several learning paradigms and alter synaptic transmission, growth cone motility, and action potential generation. The cellular phenotypes either are Ca(2+) dependent (neurotransmission and motility)...
متن کاملGlobal and local missions of cAMP signaling in neural plasticity, learning, and memory
The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc) essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC) gene rutabaga and phosphodiesterase (PDE) gene dunce have been intensively studied to understand th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 65 شماره
صفحات -
تاریخ انتشار 2010